Оборудование для проведения лазерной коррекции зрения. Что такое эксимерный лазер Фемтосекундый лазер IntraLase FS60

ЭКСИМЕРНЫЙ ЛАЗЕР

ЭКСИМЕРНЫЙ ЛАЗЕР

- газовый лазер , работающий на электронных переходах эксимерных молекул (молекул, существующих только в электронно-возбуждённых состояниях). Зависимость потенц. энергии взаимодействия атомов эксимерной , находящейся в основном электронном состоянии, от межъядерного расстояния является монотонно спадающей ф-цией, что отвечает отталкиванию ядер. Для возбуждённого электронного , являющегося верх, уровнем лазерного перехода, такая зависимость имеет минимум, определяющий возможность существования самой эксимерной (рис.). Время жизни возбуждённой эксимерной молекулы ограничено

Зависимость энергии эсимерной молекулы от расстояния R между составляющими её атомами X и Y; верхняя кривая - для верхнего лазерного уровня, нижняя кривая-для нижнего лазерного уровня. Значения соответствуют центру линии усиления активной среды, её красной и фиолетовой границам. временем её радиац. распада. Поскольку ниж. состояние лазерного перехода в Э. л. опустошается в результате разлёта атомов эксимерной молекулы, характерное к-рого (10 -13 - 10 -12 с) значительно меньше времени радиац. опустошения верх, состояния лазерного перехода, содержащий эксимерные молекулы, является активной средой с усилением на переходах между возбуждёнными связанными и основным разлётным термами эксимерной молекулы.

Основу активной среды Э. л. составляют обычно двухатомные эксимерные молекулы - короткоживущие соединения атомов инертных газов друг с другом, с галогенами или с кислородом. Длина излучения Э. л. лежит в видимой или ближней УФ-области спектра. Ширина линии усиления лазерного перехода Э. л. аномально велика, что связано с разлётным характером нижнего терма перехода. Характерные значения параметров лазерных переходов для наиб, распространённых Э. л. представлены в таблице.

Параметры эксимерных лазеров

Оптимальные параметры активной среды Э. л. соответствуют оптимальным условиям образования эксимерных молекул. Наиб, благоприятные условия для образования димеров инертных газов соответствуют диапазону давлений 10-30 атм, когда происходит интенсивное образование таких молекул при тройных столкновениях с участием возбуждённых атомов:


При столь высоких давлениях наиболее эфф. способ введения энергии накачки в активную среду лазера связан с пропусканием через газ пучка быстрых электронов, к-рые теряют энергию преим. на ионизацию атомов газа. Конверсия атомных ионов в молекулярные и последующая диссоциативная молекулярных ионов сопровождающаяся образованием возбуждённых атомов инертного газа, обеспечивают возможность эфф. преобразования энергии пучка быстрых электронов в энергию эксимерных молекул Лазеры на димерах инертных газов характеризуются ~1%. Осн. недостатком лазеров данного типа является чрезвычайно высокое значение уд. порогового энерговклада, что связано с малой длиной волны лазерного перехода и значит, шириной линии усиления. Это накладывает высокие требования на характеристики электронного пучка, используемого в качестве источника накачки лазера, и ограничивает значения выходной энергии лазерного излучения на уровне долей Дж (в импульсе) при частоте повторения импульсов не выше неск. Гц. Дальнейшее увеличение выходных характеристик лазеров на димерах инертных газов зависит от развития техники электронных ускорителей с длительностью импульса электронного пучка порядка десятков не и энергией пучка ~кДж.

Существенно более высокими выходными характеристиками отличаются Э. л. на моногалогенидах инертных газов RX*, где X - галогена. Молекулы этого типа эффективно образуются при парных соударениях, напр.или

Указанные протекают с достаточной интенсивностью уже при давлениях порядка атмосферного, поэтому проблема введения энергии в активную среду таких лазеров оказывается технически значительно менее сложной, чем в случае лазеров на димерах инертных газов. Активная среда Э. л. на моногалогенидах инертных газов состоит из одного или неск. инертных газов при давлении порядка атмосферного и нек-рого кол-ва (~10 -2 атм) га-логеносодержаших молекул. Для возбуждения лазера применяется либо пучок быстрых электронов, либо импульсный электрич. разряд. При использовании пучка быстрых электронов выходная лазерного излучения достигает значений ~ 10 3 Дж при кпд на уровне неск. процентов и частоте повторения импульсов значительно ниже 1 Гц. В случае использования электрич. разряда выходная энергия лазерного излучения в импульсе не превышает долей Дж, что связано с трудностью формирования однородного по объёму разряда в значит, объёме при атм. давлении за время ~ 10 нс. Однако при применении электрич. разряда достигается высокая частота повторения импульсов (до неск. кГц), что открывает возможности широкого практич. использования лазеров данного типа. Наиб. широкое распространение среди Э. л. получил на XeCl, что связано с относительной простотой реализации работы в режиме высокой частоты повторения импульсов. Cp. выходная этого лазера достигает уровня 1 кВт.

Наряду с высокими энергетич. характеристиками важной привлекательной особенностью Э. л. является чрезвычайно высокое значение ширины линии усиления активного перехода (табл.). Это открывает возможность создания мощных лазеров УФ- и видимого диапазонов с плавной перестройкой длины волны в достаточно широкой области спектра. Указанная задача решается с помощью инжекционной схемы возбуждения лазера, включающей в себя маломощный генератор лазерного излучения с длиной волны, перестраиваемой в пределах ширины линии усиления активной среды Э. л., и широкополосный усилитель. Эта схема позволяет получить лазерное с шириной линии ~ 10 -3 HM, перестраиваемое по длине волны в диапазоне шириной ~ 10 HM и более.

Э. л. широко используются благодаря своим высоким энергетич. характеристикам, малой длине волны и возможности её плавной перестройки в довольно широком диапазоне. Мощные моноимпульсные Э. л., возбуждаемые электронными пучками, применяются в установках по исследованию лазерного нагрева мишеней с целью осуществления термоядерных реакций (напр., KrF-лазер с HM, выходной энергией в импульсе до 100 кДж, длительностью импульса ~ 1 не). Лазеры с высокой частотой повторения импульсов, возбуждаемые импульсным газовым разрядом, используются в технол. целях при обработке изделий микроэлектроники, в медицине, в экспериментах по лазерному разделению изотопов, при зондировании атмосферы в целях контроля её загрязнения, в фотохимии и в эксперим. физике в качестве интенсивного источника монохроматич. излучения УФ- или видимого диапазона.

Лит.: Эксимерные лазеры, под ред. Ч. Роудза, пер. с англ., M., 1981; ЕлецкийА. В.. Смирнов Б. M., Физические процессы в газовых лазерах, M.. 1985. А. В. Елецкий.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЭКСИМЕРНЫЙ ЛАЗЕР" в других словарях:

    Эксимерный лазер разновидность ультрафиолетового газового лазера, широко применяемая в глазной хирургии (лазерная коррекция зрения) и полупроводниковом производстве. Термин эксимер (англ. excited dimer) обозначает возбуждённый димер и… … Википедия

    эксимерный лазер - Газовый лазер в котором лазерная активная среда в виде неустойчивого соединения ионов создается в газовом разряде при электрической накачке. [ГОСТ 15093 90] Тематики лазерное оборудование EN excimer laser … Справочник технического переводчика

    эксимерный лазер - eksimerinis lazeris statusas T sritis radioelektronika atitikmenys: angl. excimer laser vok. Excimer Laser, m rus. эксимерный лазер, m pranc. laser à excimères, m … Radioelektronikos terminų žodynas

    У этого термина существуют и другие значения, см. Лазер (значения). Лазер (лаборатория NASA) … Википедия

    Лазер, применяющийся для удаления очень тонких слоев ткани с поверхности роговицы глаза. Данная операция может производиться с целью изменения кривизны поверхности роговицы, например, в процессе лечения миопии (фоторефракционная кератэктомия… … Медицинские термины

    - (аббревиатура от Light Amplification by Stimulated Emission of Radiation) прибор, позволяющий получить очень тонкий пучок света с высокой концентрацией энергии в нем. В хирургической практике лазер применяется для проведения операций,… … Медицинские термины

    ЛАЗЕР - (laser) (аббревиатура от Light Amplification by Stimulated Emission of Radiation) прибор, позволяющий получить очень тонкий пучок света с высокой концентрацией энергии в нем. В хирургической практике лазер применяется для проведения операций,… … Толковый словарь по медицине

    ЛАЗЕР ЭКСИМЕРНЫЙ - (excimer laser) лазер, применяющийся для удаления очень тонких слоев ткани с поверхности роговицы глаза. Данная операция может производиться с целью изменения кривизны поверхности роговицы, например, в процессе лечения миопии (фоторефракционная… … Толковый словарь по медицине

    Линия фотолитографии для производства кремниевых пластин Фотолитография метод получения рисунка на тонкой плёнке материала, широко используется в микроэлектронике и в полиграфии. Один из … Википедия

Книги

  • Генераторы высоковольтных импульсов на основе составных твердотельных коммутаторов , Хомич Владислав Юрьевич, Мошкунов Сергей Игоревич. Монография посвящена вопросам разработки и создания высоковольтных генераторов импульсов на полупроводниковой основе. Описаны основные принципы построения составных высоковольтных…

Работающий на электронных переходах эксимерных молекул (молекул, существующих только в электронно-возбуждённых состояниях). Зависимость потенц. энергии взаимодействия атомов эксимерной молекулы, находящейся в основном электронном состоянии, от межъядерного расстояния является монотонно спадающей ф-цией, что отвечает отталкиванию ядер. Для возбуждённого электронного состояния, являющегося верх, уровнем лазерного перехода, такая зависимость имеет минимум, определяющий возможность существования самой эксимерной молекулы (рис.). Время жизни возбуждённой эксимерной молекулы ограничено

Зависимость энергии эсимерной молекулы от расстояния R между составляющими её атомами X и Y; верхняя кривая - для верхнего лазерного уровня, нижняя кривая-для нижнего лазерного уровня. Значения соответствуют центру линии усиления активной среды, её красной и фиолетовой границам. временем её радиац. распада. Поскольку ниж. состояние лазерного перехода в Э. л. опустошается в результате разлёта атомов эксимерной молекулы, характерное время к-рого (10 -13 - 10 -12 с) значительно меньше времени радиац. опустошения верх, состояния лазерного перехода, газ, содержащий эксимерные молекулы, является активной средой с усилением на переходах между возбуждёнными связанными и основным разлётным термами эксимерной молекулы.

Основу активной среды Э. л. составляют обычно двухатомные эксимерные молекулы - короткоживущие соединения атомов инертных газов друг с другом, с галогенами или с кислородом. Длина волны излучения Э. л. лежит в видимой или ближней УФ-области спектра. Ширина линии усиления лазерного перехода Э. л. аномально велика, что связано с разлётным характером нижнего терма перехода. Характерные значения параметров лазерных переходов для наиб, распространённых Э. л. представлены в таблице.

Параметры эксимерных лазеров

Оптимальные параметры активной среды Э. л. соответствуют оптимальным условиям образования эксимерных молекул. Наиб, благоприятные условия для образования димеров инертных газовсоответствуют диапазону давлений 10-30 атм, когда происходит интенсивное образование таких молекул при тройных столкновениях с участием возбуждённых атомов:


При столь высоких давлениях наиболее эфф. способ введения энергии накачки в активную среду лазера связан с пропусканием через газ пучка быстрых электронов, к-рые теряют энергию преим. на ионизацию атомов газа. Конверсия атомных ионов в молекулярные и последующая диссоциативная рекомбинация молекулярных ионов сопровождающаяся образованием возбуждённых атомов инертного газа, обеспечивают возможность эфф. преобразования энергии пучка быстрых электронов в энергию эксимерных молекул Лазеры на димерах инертных газов характеризуются кпд ~1%. Осн. недостатком лазеров данного типа является чрезвычайно высокое значение уд. порогового энерговклада, что связано с малой длиной волны лазерного перехода и значит, шириной линии усиления. Это накладывает высокие требования на характеристики электронного пучка, используемого в качестве источника накачки лазера, и ограничивает значения выходной энергии лазерного излучения на уровне долей Дж (в импульсе) при частоте повторения импульсов не выше неск. Гц. Дальнейшее увеличение выходных характеристик лазеров на димерах инертных газов зависит от развития техники электронных ускорителей с длительностью импульса электронного пучка порядка десятков не и энергией пучка ~кДж.

Существенно более высокими выходными характеристиками отличаются Э. л. на моногалогенидах инертных газов RX*, где X - атом галогена. Молекулы этого типа эффективно образуются при парных соударениях, напр.или

Указанные процессы протекают с достаточной интенсивностью уже при давлениях порядка атмосферного, поэтому проблема введения энергии в активную среду таких лазеров оказывается технически значительно менее сложной, чем в случае лазеров на димерах инертных газов. Активная среда Э. л. на моногалогенидах инертных газов состоит из одного или неск. инертных газов при давлении порядка атмосферного и нек-рого кол-ва (~10 -2 атм) га-логеносодержаших молекул. Для возбуждения лазера применяется либо пучок быстрых электронов, либо импульсный электрич. разряд. При использовании пучка быстрых электронов выходная энергия лазерного излучения достигает значений ~ 10 3 Дж при кпд на уровне неск. процентов и частоте повторения импульсов значительно ниже 1 Гц. В случае использования электрич. разряда выходная энергия лазерного излучения в импульсе не превышает долей Дж, что связано с трудностью формирования однородного по объёму разряда в значит, объёме при атм. давлении за время ~ 10 нс. Однако при применении электрич. разряда достигается высокая частота повторения импульсов (до неск. кГц), что открывает возможности широкого практич. использования лазеров данного типа. Наиб. широкое распространение среди Э. л. получил лазер на XeCl, что связано с относительной простотой реализации работы в режиме высокой частоты повторения импульсов. Cp. выходная мощность этого лазера достигает уровня 1 кВт.

Наряду с высокими энергетич. характеристиками важной привлекательной особенностью Э. л. является чрезвычайно высокое значение ширины линии усиления активного перехода (табл.). Это открывает возможность создания мощных лазеров УФ- и видимого диапазонов с плавной перестройкой длины волны в достаточно широкой области спектра. Указанная задача решается с помощью инжекционной схемы возбуждения лазера, включающей в себя маломощный генератор лазерного излучения с длиной волны, перестраиваемой в пределах ширины линии усиления активной среды Э. л., и широкополосный усилитель. Эта схема позволяет получить лазерное излучение с шириной линии ~ 10 -3 HM, перестраиваемое по длине волны в диапазоне шириной ~ 10 HM и более.

Э. л. широко используются благодаря своим высоким энергетич. характеристикам, малой длине волны и возможности её плавной перестройки в довольно широком диапазоне. Мощные моноимпульсные Э. л., возбуждаемые электронными пучками, применяются в установках по исследованию лазерного нагрева мишеней с целью осуществления термоядерных реакций (напр., KrF-лазер сHM, выходной энергией в импульсе до 100 кДж, длительностью импульса ~ 1 не). Лазеры с высокой частотой повторения импульсов, возбуждаемые импульсным газовым разрядом, используются в технол. целях при обработке изделий микроэлектроники, в медицине, в экспериментах по лазерному разделению изотопов, при зондировании атмосферы в целях контроля её загрязнения, в фотохимии и в эксперим. физике в качестве интенсивного источника монохроматич. излучения УФ- или видимого диапазона.

Лит.: Эксимерные лазеры, под ред. Ч. Роудза, пер. с англ., M., 1981; ЕлецкийА. В.. Смирнов Б. M., Физические процессы в газовых лазерах, M.. 1985. А. В. Елецкий .

Эксимер-лазерная установка WaveLight EX500

WaveLight EX500 - эксимер-лазерная установка последнего поколения, использование уникальных преимуществ которой позволяет максимально комфортно и безопасно для пациента добиваться наилучших показателей остроты зрения.

Рабочая частота импульса - 500 Гц, что позволяет считать WaveLight EX500 одной из самых быстрых эксимер-лазерных систем в мире. Благодаря высокой скорости работы лазера роговица не подвергается излишнему термическому воздействию, что предотвращает ее обезвоживание во время процедуры - соответственно, восстановительный период после лазерной коррекции сокращается и протекает максимально комфортно.

В новой эксимер-лазерной установке реализована полная интеграция с диагностическим комплексом - единый сервер для диагностического оборудования и хирургического лазера позволяет полностью автоматизировать перенос данных, что минимизирует человеческий фактор. Встроенный пахиметр обеспечивает дополнительный контроль глубины лазерного воздействия, позволяя измерять толщину роговицы в режиме on-line, на всех этапах хирургического вмешательства.

Точно определить зону воздействия лазера позволяет инфракрасная система трэкинга, которая следит за центром зрачка и синхронизирована с самим лазерным источником. Время реакции системы слежения за глазом менее 3 миллисекунд. Частота системы слежения за глазом 1050Гц. Контроль положения глаза по центру зрачка, краю роговицы, радужной оболочке позволяет отслеживать малейшие движения глаза таким образом, чтобы не оказывалось влияние на точность проведения коррекции.

Благодаря использованию технологий оптимизированного и контролируемого волнового фронта предотвращается риск возникновения сферических аберраций, у пациентов практически отсутствуют проблемы, связанные с нарушениями сумеречного и ночного видения.

Границы применения эксимер-лазерной установки WaveLight EX500:

  • близорукость от -0.25 до -14,0 D;
  • миопический астигматизм от -0.25 до -6.0 D;
  • дальнозоркость от +0.25 до +6.0 D;
  • гиперметропический астигматизм от +0.25 до +6.0 D.

Лазер VISX Star S4 IR

Лазер VISXStarS4 IR существенно отличается от других моделей — он позволяет проводить эксимер-лазерную коррекцию пациентам с осложненными формами близорукости, дальнозоркости и аберрациями (искажениями) более высоких порядков.

Новый комплексный подход, реализованный в установке VISX Star S4 IR, позволяет гарантировать максимально сглаженную поверхность роговицы, формируемую в процессе лазерной коррекции, отслеживать возможные незначительные движения глаза пациента в ходе операции, максимально компенсировать сложнейшие искажения всех оптических структур глаза. Такие характеристики эксимерного лазера существенно снижают вероятность послеоперационных осложнений, значительно сокращают реабилитационный период, и гарантируют высочайшие результаты.

Границы применения:

  • Близорукость (миопия) до —16 D;
  • Дальнозоркость (гиперметропия) до +6 D;
  • Сложный астигматизм до 6 D.

Фемтосекундые лазеры

Фемтосекундый лазер FS200 WaveLight

Фемтосекундный лазер FS200 WaveLight обладает самой высокой скоростью формирования роговичного лоскута — всего за 6 секунд, в то время как другие модели лазеров формируют стандартный лоскут за 20 секунд. В процессе эксимер-лазерной коррекции фемтосекундный лазер FS200 WaveLight создает роговичный лоскут путем приложения очень быстрых импульсов лазерного излучения.

Фемтосекундный лазер использует луч инфракрасного света для точного отделения ткани на заданной глубине с помощью процесса, называемого «фоторазрыв». Импульс лазерной энергии фокусируется в точном месте внутри роговицы , тысячи лазерных импульсов располагаются рядом для создания плоскости доступа. За счет нанесения по определенному алгоритму и на определенной глубине в роговице множества лазерных импульсов представляется возможным выкроить роговичный лоскут любой формы и на любой глубине. То есть уникальные характеристики фемтосекундного лазера дают возможность офтальмохирургу формировать роговичный лоскут, полностью контролируя его диаметр, толщину, центровку и морфологию при минимальном нарушении архитектуры.

Чаще всего фемтосекундный лазер применяется в ходе эксимер-лазерной коррекции по методике ФемтоЛасик , которая отличается от других методик тем, что роговичный лоскут формируется с помощью лазерного луча, а не механического микрокератома. Отсутствие механического воздействия увеличивает безопасность проведения лазерной коррекции и в несколько раз снижает риск появления приобретенного послеоперационного роговичного астигматизма, а также позволяет проводить лазерную коррекцию пациентам с тонкой роговицей.

Фемтосекундный лазер FS200 WaveLight объединен в единую систему с , и поэтому время проведения процедуры эксимер-лазерной коррекции с использованием этих двух лазерных установок — минимальное. Благодаря своим уникальным свойствам по созданию индивидуального роговичного лоскута, фемтосекундный лазер также успешно применяется в ходе проведения кератопластики при формировании роговичного туннеля для последующей имплантации внутристромального кольца.

Фемтосекундый лазер IntraLase FS60

Фемтосекундный лазер IntraLase FS60 обладает высокой частотой и малой продолжительностью импульсов. Продолжительность одного импульса измеряется фемтосекундами (одна триллионная часть секунды, 10-15с), что позволяет разделять слои роговицы на молекулярном уровне без выделения тепла и механического воздействия на окружающие ткани глаза. Процесс формирования лоскута при помощи фемтосекундного лазера FS60 для проведения лазерной коррекции зрения происходит за несколько секунд, абсолютно бесконтактно (без разреза роговицы).

Фемтосекундный лазер IntraLase FS60 входит в завершенную линейку оборудования системы iLasik. Он работает совместно с эксимерным лазером VISX Star S4 IR и аберрометром WaveScan. Этот комплекс дает возможность проводить лазерную коррекцию зрения, учитывая малейшие особенности зрительной системы пациента.

Микрокератомы

Результат лазерной коррекции зависит от многих параметров. Это и опыт специалиста, и применяемая методика лечения, и лазер используемый в ходе коррекции. Но не менее значим в процессе лечения такой прибор, как микрокератом. Микрокератом необходим для проведения эксимер-лазерной коррекции по методике ЛАСИК. Особенность микрокератомов, работающих в клиниках «Эксимер», — высочайшая безопасность. Они могут работать в автономном режиме, вне зависимости от электроснабжения. В процессе лечения по методике ЛАСИК воздействию подвергаются не внешние слои роговицы, а внутренние. Для того, чтобы отделить верхние слои роговицы, и нужен микрокератом. В клинике «Эксимер» используют микрокератомы всемирно известной фирмы «Moria». Она одной из первых стала выпускать не ручные, а автоматические модели, которые позволили минимизировать риски при проведении эксимер-лазерной коррекции и существенно повысить ее качество.

Moria Evolution 3

Данный тип микрокератома позволяет осуществить подготовительную стадию перед эксимер-лазерной коррекцией зрения (а именно — формирование лоскута) наименее болезненно для пациента и снизить состояние дискомфорта до минимума. Прибор оснащен многоразовыми головками, фиксирующими вакуумными кольцами, а также непосредственно автоматическим кератомом ротационного типа. Конструкция колец и головок микрокератома позволяет гибко настраивать оборудование под индивидуальные особенности глаза пациента, что приводит к более точным и гарантированным результатам.

Эксимерный лазер – основное действующее лицо ФРК и ЛАСИКа. Свое название он получил от комбинации двух слов: excited – возбужденный, dimer – двойной. Активное тело таких лазеров состоит из смеси двух газов – инертного и галогенового. При подаче высокого напряжения в смесь газов, атом инертного газа и атом галогена формируют молекулу двухатомного газа. Эта молекула находится в возбужденном и крайне нестабильном состоянии. Через мгновение, порядка тысячных долей секунды, молекула распадается. Распад молекулы приводит к излучению световой волны в ультрафиолетовом диапазоне (чаще 193 нм.).

Принцип воздействия излучения ультрафиолетового диапазона на органическое соединение, в частности на роговичную ткань, заключается в разъединении межмолекулярных связей и, как результат, перевод части ткани из твердого состояния в газообразное (фотоабляция). Первые лазеры имели диаметр пучка равный диаметру испаряемой поверхности, и отличались значительным повреждающим действием на роговицу. Широкий профиль луча, его неоднородность, вызывали неоднородность кривизны поверхности роговицы, достаточно высокий нагрев роговичной ткани (на 15-20˚), что влекло за собой ожоги и помутнения роговицы.

Лазеры нового поколения были модернизированы. Был уменьшен диаметр пучка, а для обработки всей необходимой поверхности роговицы была создана ротационно-сканирующая система подачи лазерного излучения к глазу. На самом деле эта система была создана в конце 50-х годов, и до сих пор с успехом применяется в сканирующих головках самонаведения ракет. Все эксимерные лазеры работают в одном диапазоне длин волн, в импульсном режиме, и различаются только модуляцией лазерного пучка и составом активного тела. Лазерный пучок, в поперечном разрезе представляющий собой прорезь или пятно, перемещается по окружности постепенно снимая слои роговицы и придавая ей новый радиус кривизны. Температура в зоне абляции практически не повышается вследствие кратковременного воздействия. Ровная поверхность роговицы полученная в результате операции, позволяет получить точный и стойкий рефракционный результат.

Поскольку хирургу заранее известно, какова порция световой энергии подаваемой на объект (роговицу) он может рассчитать, на какую глубину будет проведена абляция. И какого результата он добьется в процессе проведения рефракционной операции. И вот, наконец - то, на пороге третьего тысячелетия появился новый метод, позволяющий решить эту проблему - это эксимер-лазерная коррекция, которая избавляет людей от близорукости, астигматизма и дальнозоркости. Лазерная коррекция впервые отвечает всем требованиям человека с "плохим" зрением. Научная обоснованность, безболезненность, максимальная безопасность, стабильность результатов - это те безоговорочные факторы, которые ее характеризуют. Область офтальмохирургии, занимающаяся коррекций этих аномалий, называется рефракционная хирургия, а сами они - аномалии рефракции или аметропии.

Специалисты выделяют два типа рефракции:
- Эмметропия - нормальное зрение;
- Аметропия - аномальное зрение, включающее несколько видов: миопия - близорукость; гиперметропия - дальнозоркость, астигматизм - искажение изображения, когда кривизна роговицы неправильная и ход световых лучей на разных ее участках неодинаков. Астигматизм бывает миопическим (близоруким), гиперметропическим (дальнозорким) и смешанным. Чтобы понять суть рефракционных вмешательств, очень кратко и схематично вспомним анатомическую - физику глаза. Оптическая система глаза состоит из двух структур: светопреломляющая часть - роговица и хрусталик и световоспринимающая часть - сетчатка, расположенная на определенном (фокусном) расстоянии. Для того, чтобы изображение было резким и четким, сетчатка должна находится в фокусе оптической силы шара. В случае, если сетчатка будет находится впереди фокуса, что бывает при дальнозоркости или позади фокуса при близорукости, изображение предметов будет размытым и нечетким. При этом с момента рождения и до 18-20 лет оптика глаза меняется ввиду физиологического роста глазного яблока и под действием факторов, нередко приводящих к формированию тех или иных аномалий рефракции. Поэтому пациентом рефракционного хирурга чаще становится человек, достигший 18-20 лет.

В основе эксимер-лазерной коррекции зрения лежит программа "компьютерного перепрофилирования" поверхности основной оптической линзы глаза человека - роговицы. По индивидуальной программе коррекции холодный луч "выглаживает" роговицу, устраняя все имеющиеся дефекты. При этом формируются нормальные условия для оптимального преломления света и получения неискаженного образа в глазу, как у людей с хорошим зрением. Процесс "перепрофилирования" не сопровождается губительным повышением температуры тканей роговицы, и как многие ошибочно считают ни какого "выжигания" не происходит. И самое главное, эксимер-лазерные технологии позволяют получить настолько "идеальный новый заданный профиль" роговицы, что дало возможность исправлять ими практически все виды и степени аномалий рефракции. Говоря научным языком, эксимерные лазеры - высокоточные системы, обеспечивающие необходимую "фотохимическую абляцию" (испарение) слоев роговицы. Если ткань удаляется в центральной зоне, то роговица становится более плоской, что исправляет близорукость. Если же испарить периферическую часть роговицы, то ее центр станет более "крутым", что позволяет корригировать дальнозоркость. Дозированное удаление в разных меридианах роговицы позволяет исправлять астигматизм. Современные лазеры, используемые в рефракционной хирургии, надежно гарантируют высокое качество "аблируемой" поверхности.